eficode

The three-pillar,
balanced quality
model of...

...Proactive QA, Detective QA and
Reactive QA

p
|

ef N
b b A .4

Szilard Szell - DevOps Transformation Lead - 27.11.2024
www.eficode.com

Oy »~ “Testing is leaming about
Szilard ST

~ feedbadk Continuous
Szell Testing is amplifying
feedbadk”
v DevOps transformation
lead

v Test and Quality Coach

v Agile coach and SAFe
SPC, trainer

v Volunteer in ISTQB

v Public speaker

Experience
24 years of experience in QA and DevOps in
Telecommunications industry (
12 years of experience as change agent
SAFe SPC, Certified Scrum Master, DevOps DASA
ISTQB CTEL-ITP-Full, CTAL-TM, CTFL-AT, CTFL, IREB CPRE
ITIL4 Foundation
Lean Six Sigma Green Belt
Lean Service Creation - Facilitator
XRAY Certified Expert

The three ways
of DevOps and
Quality

1. The First Way: The Principles of Flow

2333333

“Being able to take needless work out of the system is more important than being able to
put more work into the system.”

Gene Kim

More testing slows down the flow

Design > _Plan > Code > Build) Test) Deploy > Release yOperate)Monitor

Detective QA

DD

Automation and Shift Left for faster flow

Design > _Plan) Code > Build) Test) Deploy >Release yOperate)Monitor

Proactive QA Detective QA

< Shift Left

DODDDDDD

2. The Second Way: The Principles of
Feedback

((((((((
))))))))

“‘Improving daily work is even more important than doing daily work.”

Gene Kim

Shift Right to amplify Feedback

Proactive QA Detective QA Reactive QA

< Shift Left Shift Right>

) < < < < < << 4
DOIDDIDDDD

3. The Third Way: The Principles of Continual
Learning and Experimentation

NN NN NNNNZ

DOOOOODD

“If you can't out-experiment and beat your competitors in time to market and agility, you
are sunk.”

Gene Kim

eficode

All to the Left and Right to amplify Learning

Proactive QA Detective QA Reactive QA
< Shift Left >

DODODOOODDD DD

Quality

Transformation ‘l

Quality transformation

Where you want to be Where most companies focus Where you want to be
Shift Left Shift Right>
Proactive QA Detective QA Reactive QA
Design > _Plan_ Code) Build) Test) Deploy >Release)Operate > Monitor 4
When designing: When coding: When testing: When releasing: When operating:
Understanding Using Al-driven Using automated tests Getting acceptance Monitoring the
user needs well. development to and best practices like testing and early data, getting
N avoid human error. shared test repositories user feedback feedback, and
Writing | and reporting standards. through pilots and finding
development Continuous crowd testing improvement
requirements Integration possibilities.
based as tests. practices to release Prepared for plan
and test small A/B/C

Increments.

© Eficode

Adding all practices. Are we there yet?

Proactive QA < Shift Left Detective QA | Shift Rig ht> Reactive QA

Design Thinking Al-driven Continuous Testing Acceptance Test on Telemetry and
development standardized Staging Observability
Ux Feedback Keyword Driven Test
Through Prototypes Static Application Automation Chaos Engineering Active Probes
Security Testing
Personas, Empathy (SAST) Exploratory Testing and Continuous Feature Toggle and
Maps, Customer Bug hunting Deployment strategy A/B Testing
Journey Mapping Continuous
Integration practices Continuous Non-functional Canary Release and App Store feedback
Story Mapping testing Dark Launch monitoring
Merging strategies
BDD/ATDD Shared test repositories Roll Back/Forward ITSM and Blameless
Software Bill of and reporting Post Mortem
DoR/DoD/Refinement Material (SBoM) Crowd Testing

Agile Practices = Built in Quality Automation = Fast Feedback Transparency = Trust © Eficode

Internal Developer Platform

A foundation of self-service APIs,
tools, services, khnowledge and
support which are arranged as a
compelling internal product

Evan Bottcher
Head of Engineering at Thoughtworks

Platform engineering for efficiency

Proactive QA < Shift Left Detective QA | Shift Rig ht> Reactive QA

Design Thinking Al-driven Continuous Testing Acceptance Test on Telemetry and
development standardized Staging Observability
Ux Feedback Keyword Driven Test
Through Prototypes Static Application Automation Chaos Engineering Active Probes
Security Testing
Personas, Empathy (SAST) Exploratory Testing and Continuous Feature Toggle and
Maps, Customer Bug hunting Deployment strategy A/B Testing
Journey Mapping Continuous
Integration practices Continuous Non-functional Canary Release and App Store feedback
Story Mapping testing Dark Launch monitoring
Merging strategies
BDD/ATDD Shared test repositories Roll Back/Forward ITSM and Blameless
Software Bill of and reporting Post Mortem
DoR/DoD/Refinement Material (SBoM) Crowd Testing

Internal Developer Platform

Agile Practices = Built in Quality Automation = Fast Feedback Transparency = Trust © Eficode

Collaborate on CQA Strategy as pipeline

\-51unl"0

WL L] |

il 7

Continuous QA Strategy as pipeline

Proactive QA < Shift Left Detective QA | Shift Rig ht> Reactive QA

Design Thinking Al-driven Continuous Testing Acceptance Test on Telemetry and
development standardized Staging Observability
Ux Feedback Keyword Driven Test
Through Prototypes Static Application Automation Chaos Engineering Active Probes
Security Testing
Personas, Empathy (SAST) Exploratory Testing and Continuous Feature Toggle and
Maps, Customer Bug hunting Deployment strategy A/B Testing
Journey Mapping Continuous
Integration practices Continuous Non-functional Canary Release and App Store feedback
Story Mapping testing Dark Launch monitoring
Merging strategies
BDD/ATDD Shared test repositories Roll Back/Forward ITSM and Blameless
Software Bill of and reporting Post Mortem
DoR/DoD/Refinement Material (SBoM) Crowd Testing
CQA Strategy implemented in the CI/CD pipeline
[Internal Developer Platform]

Agile Practices = Built in Quality Automation = Fast Feedback Transparency = Trust © Eficode

Product development and customer
satisfaction - the KANO model

Satisfied
A Performance needs
Over time delightful Delighters

' tion b .
another basic need Must-be Quality
" 7 One-dimensional Quality

Not implemented x : Fully implemented
. a—— — N\ 7_—, Attractive Quality
Indifferent Quality
f,f” Basic needs

/ Reverse Quality

¥

https//en.wikipedia.org/wiki/Kano_model Dissatisfied developed in the 1980s by Noriaki Kano,

https://en.wikipedia.org/wiki/Kano_model
https://en.wikipedia.org/wiki/Noriaki_Kano

Balanced Quality Goals

QA QA QA o QA

USER FRIENDLINESS ' TESTABILITY ' STRUCTURE STABILITY SECURITY AND

QUALITY ASPECTS QUALITY ASPECTS QUALITY ASPECTS QUALITY ASPECTS PERMISSION
QUALITY ASPECTS

Usability Aspect: Will users find the Maintainability Aspect: Everything Reliability Aspect: The architecture, Reliability Aspect: Is your product
product convenient and easy to work and anything that impacts how easy technologies used, different going down every 15 minutes? What
with? But more important: will they or hard your testing efforts are. programming languages and could be the root cause?

enjoy it? duplicated code.

Reliability Aspect: Watch Dogs,
cameras, user credentials, firearms
or alarm systems. What's keeping
the bad guys out of, and away from

your app?
- +
QA QA QA QA QA
SCALABILITY SAFE-GUARD RESOURCE PERFORMANCE OPERATIONS

QUALITY ASPECTS QUALITY ASPECTS MANAGEMENT QUALITY ASPECTS QUALITY ASPECTS
QUALITY ASPECTS

Efficiency Aspect: How well can your Maintainability Aspect: How easy or
app execute the commands it's been hard is it to rectify a problem in
given? How about many commands production after the product is

all at once? released?

QA QA QA QA QA

OBSERVABILITY INTERNATIONALIZATION INSTALLABILITY IMPARTIALITY FUNCTIONALITY
QUALITY ASPECTS QUALITY ASPECTS QUALITY ASPECTS QUALITY ASPECTS QUALITY ASPECTS

Efficiency Aspect: Hardware is Security Aspect: What's keeping the
cheap these days. Just enter your bad guys out?

credit card and there you go. How

much hardware can you juggle?

Efficiency Aspect: How does your
app handle resources? ? Can they be
reduced?

Controllability Aspect: How well can Usability Aspect: Currency, time Portability Aspect: All the factors Functionality Aspect: Software built Functionality Aspect: The user needs
you see what's actually going on zone, language, right-to-left... Can that matter during the installation by humans imitates the social to be able to do X, so we test it.
within the product? Can you answer you use your application anywhere in process of your app. structures that are considered What could go wrong?

new questions without deploying the world? ‘normal’ by those humans. This

code? includes their biases, favouritism &
prejudices.

-

https://app.riskstormingonline.com/

https://app.riskstormingonline.com/

Add Quality goals by Product Management

NFRs Balanced Quality Goals SLIs

Proactive QA < Shift Left Detective QA | Shift Rig ht> Reactive QA

Design Thinking Al-driven Continuous Testing Acceptance Test on Telemetry and
development standardized Staging Observability
Ux Feedback Keyword Driven Test
Through Prototypes Static Application Automation Chaos Engineering Active Probes
Security Testing
Personas, Empathy (SAST) Exploratory Testing and Continuous Feature Toggle and
Maps, Customer Bug hunting Deployment strategy A/B Testing
Journey Mapping Continuous
Integration practices Continuous Non-functional Canary Release and App Store feedback
Story Mapping testing Dark Launch monitoring
Merging strategies
BDD/ATDD Shared test repositories Roll Back/Forward ITSM and Blameless
Software Bill of and reporting Post Mortem
DoR/DoD/Refinement Material (SBoM) Crowd Testing

CQA Strategy implemented in the CI/CD pipeline

Internal Developer Platform

Agile Practices = Built in Quality Automation = Fast Feedback Transparency = Trust © Eficode

Three pillar Balanced Quality model

NFRs Balanced Quality Goals SLls

Proactive QA < Shift Left Detective QA | Shift Rig ht> Reactive QA

Design Thinking Al-driven Continuous Testing Acceptance Test on Telemetry and
development standardized Staging Observability
Ux Feedback Keyword Driven Test
Through Prototypes Static Application Automation Chaos Engineering Active Probes
Security Testing
Personas, Empathy (SAST) Exploratory Testing and Continuous Feature Toggle and
Maps, Customer Bug hunting Deployment strategy A/B Testing
Journey Mapping Continuous
Integration practices Continuous Non-functional Canary Release and App Store feedback
Story Mapping testing Dark Launch monitoring
Merging strategies
BDD/ATDD Shared test repositories Roll Back/Forward ITSM and Blameless
Software Bill of and reporting Post Mortem
DoR/DoD/Refinement Material (SBoM) Crowd Testing

CQA Strategy implemented in the CI/CD pipeline

Internal Developer Platform

Agile Practices = Built in Quality Automation = Fast Feedback Transparency = Trust © Eficode

o
Nice, but how ‘}, (\
to apply? |

|

il

USER FRIENDLINESS
QUALI ECTS

Usability Aspect: Will users find the

Example - User Fr iendliness e e

enjoy it?

NFRs Balanced Quality Goals SLls

Proactive QA < Shift Left Detective QA | Shift Rig ht> Reactive QA

Design Thinking Al-driven Continuous Testing Acceptance Test on Telemetry and
development standardized Staging Observability

Ux Feedback Keyword Driven Test
Through Prototypes Static Application Automation Chaos Engineering Active Probes
Security Testing
Exploratory Testing and Continuous Feature Toggle and
Bug hunting Deployment strategy A/B Testing

Personas, Empathy (SAST)

Maps, Customer

Journey Mappino Continuous
Integration practices Continuous Non-functional Canary Release and App Store feedback
Story Mapping testing Dark Launch monitoring

Merging strategies
BDD/ATDD Shared test repositories Roll Back/Forward

ITSM and Blameless
Software Bill of and reporting Post Mortem
DoR/DoD/Refinement Material (SBoM) Crowd Testing

CQA Strategy implemented in the CI/CD pipeline

Internal Developer Platform

Agile Practices = Built in Quality Automation = Fast Feedback Transparency = Trust © Eficode

PERFORMANCE
ALITY 2

Exa m I e e rfo r m a n ce Efficiency Aspect: How well can your
app execute the commands it's been

given? How about many commands

-

all at once?

NFRs Balanced Quality Goals SLIs

Proactive QA < Shift Left Detective QA | Shift Rig ht> Reactive QA

Design Thinking Al-driven Continuous Testing Acceptance Test on Telemetry and
development standardized Staging Observability
Ux Feedback Keyword Driven Test
Through Prototypes Static Application Automation Chaos Engineering Active Probes
Security Testing
Personas, Empathy (SAST) Exploratory Testing and Continuous Feature Toggle and

Bug hunting Deployment strategy A/B Testing

Continuous Non-functional Canary Release and App Store feedback
testing Dark Launch monitoring

BDD/ATDD Shared test repositories and Roll Back/Forward ITSM and Blameless
reporting Post Mortem

Software Bill of
DoR/DoD/Refinemen Material (SBoM) Crowd Testing

CQA Strategy implemented in the CI/CD pipeline

Maps, Customer
Journey Mapping Continuous
Integration practices

Story Mapping
Merging strategies

Internal Developer Platform

Agile Practices = Built in Quality Automation = Fast Feedback Transparency = Trust © Eficode

. . . . eficode
Continuous Testlng IS Important
however...

Summary

...Quality shall be handled on the
Left and Right, with a balance

Internal Development Platform is
your foundation to build on

Leadership to set Balanced
Quality goals and follow it up

DevOps needs even more Quality

eficode

Questions?

Thank you

www.linkedin.com/in/szellszilard/

https://www.eficode.com/szilard-szell

E"|-.I=--

For more info, visit www.eficode.com

28

https://www.youtube.com/user/Eficode
https://www.youtube.com/user/Eficode
https://www.youtube.com/user/Eficode
http://www.eficode.com
https://www.eficode.com/szilard-szell
http://linkedin.com/company/eficode
http://www.linkedin.com/in/szellszilard/
https://www.linkedin.com/company/eficode/mycompany/verification/

	Slide 1: The three-pillar, balanced quality model of… ...Proactive QA, Detective QA and Reactive QA
	Slide 3: Szilárd Széll
	Slide 4: The three ways of DevOps and Quality
	Slide 5
	Slide 6: More testing slows down the flow
	Slide 7: Automation and Shift Left for faster flow
	Slide 8: 2. The Second Way: The Principles of Feedback
	Slide 9: Shift Right to amplify Feedback
	Slide 10: 3. The Third Way: The Principles of Continual Learning and Experimentation
	Slide 11: All to the Left and Right to amplify Learning
	Slide 12: Quality Transformation
	Slide 13: Quality transformation
	Slide 14: Adding all practices. Are we there yet?
	Slide 15: Internal Developer Platform
	Slide 16: Platform engineering for efficiency
	Slide 17: Collaborate on CQA Strategy as pipeline
	Slide 18: Continuous QA Strategy as pipeline
	Slide 19: Product development and customer satisfaction - the KANO model
	Slide 20: Balanced Quality Goals
	Slide 21: Add Quality goals by Product Management
	Slide 22: Three pillar Balanced Quality model
	Slide 23: Nice, but how to apply?
	Slide 24: Example – User Friendliness
	Slide 25: Example – performance
	Slide 26: Summary
	Slide 27: Questions?
	Slide 28: Thank you

